結果
問題 | No.2277 Honest or Dishonest ? |
ユーザー |
![]() |
提出日時 | 2023-04-21 22:07:03 |
言語 | Go (1.23.4) |
結果 |
AC
|
実行時間 | 63 ms / 2,000 ms |
コード長 | 5,857 bytes |
コンパイル時間 | 16,171 ms |
コンパイル使用メモリ | 233,352 KB |
実行使用メモリ | 17,024 KB |
最終ジャッジ日時 | 2024-11-08 06:33:05 |
合計ジャッジ時間 | 19,502 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 50 |
ソースコード
package mainimport ("bufio""fmt""io""os""strconv")var iost *Iosttype Iost struct {Scanner *bufio.ScannerWriter *bufio.Writer}func NewIost(fp io.Reader, wfp io.Writer) *Iost {const BufSize = 2000005scanner := bufio.NewScanner(fp)scanner.Split(bufio.ScanWords)scanner.Buffer(make([]byte, BufSize), BufSize)return &Iost{Scanner: scanner, Writer: bufio.NewWriter(wfp)}}func (i *Iost) Text() string {if !i.Scanner.Scan() {panic("scan failed")}return i.Scanner.Text()}func (i *Iost) Atoi(s string) int { x, _ := strconv.Atoi(s); return x }func (i *Iost) GetNextInt() int { return i.Atoi(i.Text()) }func (i *Iost) Atoi64(s string) int64 { x, _ := strconv.ParseInt(s, 10, 64); return x }func (i *Iost) GetNextInt64() int64 { return i.Atoi64(i.Text()) }func (i *Iost) Atof64(s string) float64 { x, _ := strconv.ParseFloat(s, 64); return x }func (i *Iost) GetNextFloat64() float64 { return i.Atof64(i.Text()) }func (i *Iost) Print(x ...interface{}) { fmt.Fprint(i.Writer, x...) }func (i *Iost) Printf(s string, x ...interface{}) { fmt.Fprintf(i.Writer, s, x...) }func (i *Iost) Println(x ...interface{}) { fmt.Fprintln(i.Writer, x...) }func isLocal() bool { return os.Getenv("NICKEL") == "BACK" }func main() {fp := os.Stdinwfp := os.Stdoutif isLocal() {fp, _ = os.Open(os.Getenv("WELL_EVERYBODY_LIES_TOO_MUCH"))}iost = NewIost(fp, wfp)defer func() {iost.Writer.Flush()}()solve()}func solve() {SetMod(Mod998244353)n := iost.GetNextInt()q := iost.GetNextInt()aa := make([]int, q)bb := make([]int, q)cc := make([]int, q)ee := make([][][2]int, n)for i := 0; i < q; i++ {aa[i] = iost.GetNextInt() - 1bb[i] = iost.GetNextInt() - 1cc[i] = iost.GetNextInt()ee[aa[i]] = append(ee[aa[i]], [2]int{bb[i], cc[i]})ee[bb[i]] = append(ee[bb[i]], [2]int{aa[i], cc[i]})}visited := make([]bool, n)lier := make([]int, n)g := 0for i := 0; i < n; i++ {if visited[i] {continue}g++visited[i] = trueq := make([]int, 0)q = append(q, i)for len(q) > 0 {p := q[0]q = q[1:]for _, e := range ee[p] {if visited[e[0]] {if lier[e[0]] != lier[p]^e[1] {iost.Println(0)return}continue}visited[e[0]] = truelier[e[0]] = lier[p] ^ e[1]q = append(q, e[0])}}}iost.Println(Mint(2).Pow(Mint(g)))}// Dsu Data structures and algorithms for disjoint set union problemstype Dsu struct {n intparentOrSize []int}// NewDsu Constructorfunc NewDsu(n int) *Dsu {p := make([]int, n)for i := 0; i < n; i++ {p[i] = -1}return &Dsu{parentOrSize: p, n: n}}// Merge adds an edge (a, b).func (d *Dsu) Merge(a, b int, meld ...func(int, int)) int {x := d.Leader(a)y := d.Leader(b)if x == y {return x}if -d.parentOrSize[x] < -d.parentOrSize[y] {x, y = y, x}d.parentOrSize[x] += d.parentOrSize[y]d.parentOrSize[y] = xfor _, f := range meld {f(x, y)}return x}// Same returns whether the vertices a and b are in the same connected component.func (d *Dsu) Same(a, b int) bool {return d.Leader(a) == d.Leader(b)}// Leader returns the representative of the connected component that contains the vertex a.func (d *Dsu) Leader(a int) int {if d.parentOrSize[a] < 0 {return a}d.parentOrSize[a] = d.Leader(d.parentOrSize[a])return d.parentOrSize[a]}// Size returns the size of the connected component that contains the vertex a.func (d *Dsu) Size(a int) int {return -d.parentOrSize[d.Leader(a)]}// Groups divides the graph into connected components and returns the list of them.func (d *Dsu) Groups() [][]int {result := make([][]int, d.n)groups := make([][]int, 0)for i := 0; i < d.n; i++ {l := d.Leader(i)result[l] = append(result[l], i)}for i := 0; i < d.n; i++ {if result[i] == nil {continue}groups = append(groups, result[i])}return groups}// Mod constants.const (Mod1000000007 = 1000000007Mod998244353 = 998244353)var (mod Mintfmod func(Mint) Mint)// Mint treats the modular arithmetictype Mint int64// SetMod sets the mod. It must be called first.func SetMod(newmod Mint) {switch newmod {case Mod1000000007:fmod = staticMod1000000007case Mod998244353:fmod = staticMod998244353default:mod = newmodfmod = dynamicMod}}func dynamicMod(m Mint) Mint {m %= modif m < 0 {return m + mod}return m}func staticMod1000000007(m Mint) Mint {m %= Mod1000000007if m < 0 {return m + Mod1000000007}return m}func staticMod998244353(m Mint) Mint {m %= Mod998244353if m < 0 {return m + Mod998244353}return m}// Mod returns m % mod.func (m Mint) Mod() Mint {return fmod(m)}// Inv returns modular multiplicative inversefunc (m Mint) Inv() Mint {return m.Pow(Mint(0).Sub(2))}// Pow returns m^nfunc (m Mint) Pow(n Mint) Mint {p := Mint(1)for n > 0 {if n&1 == 1 {p.MulAs(m)}m.MulAs(m)n >>= 1}return p}// Add returns m+xfunc (m Mint) Add(x Mint) Mint {return (m + x).Mod()}// Sub returns m-xfunc (m Mint) Sub(x Mint) Mint {return (m - x).Mod()}// Mul returns m*xfunc (m Mint) Mul(x Mint) Mint {return (m * x).Mod()}// Div returns m/xfunc (m Mint) Div(x Mint) Mint {return m.Mul(x.Inv())}// AddAs assigns *m + x to *m and returns mfunc (m *Mint) AddAs(x Mint) *Mint {*m = m.Add(x)return m}// SubAs assigns *m - x to *m and returns mfunc (m *Mint) SubAs(x Mint) *Mint {*m = m.Sub(x)return m}// MulAs assigns *m * x to *m and returns mfunc (m *Mint) MulAs(x Mint) *Mint {*m = m.Mul(x)return m}// DivAs assigns *m / x to *m and returns mfunc (m *Mint) DivAs(x Mint) *Mint {*m = m.Div(x)return m}