結果
| 問題 |
No.1388 Less than K
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2023-11-19 02:37:33 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 2,965 ms / 3,000 ms |
| コード長 | 3,949 bytes |
| コンパイル時間 | 374 ms |
| コンパイル使用メモリ | 82,048 KB |
| 実行使用メモリ | 92,288 KB |
| 最終ジャッジ日時 | 2024-09-26 06:12:40 |
| 合計ジャッジ時間 | 40,987 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 74 |
ソースコード
import sys
readline=sys.stdin.readline
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=None):
self.p=p
self.e=e
if self.e==None:
self.mod=self.p
else:
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
#assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
if self.e==None:
for i in range(1,N+1):
self.factorial.append(self.factorial[-1]*i%self.mod)
else:
self.cnt=[0]*(N+1)
for i in range(1,N+1):
self.cnt[i]=self.cnt[i-1]
ii=i
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append(self.factorial[-1]*ii%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Build_Inverse(self,N):
self.inverse=[None]*(N+1)
assert self.p>N
self.inverse[1]=1
for n in range(2,N+1):
if n%self.p==0:
continue
a,b=divmod(self.mod,n)
self.inverse[n]=(-a*self.inverse[b])%self.mod
def Inverse(self,n):
return self.inverse[n]
def Fact(self,N):
if N<0:
return 0
retu=self.factorial[N]
if self.e!=None and self.cnt[N]:
retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
retu%=self.mod
return retu
def Fact_Inve(self,N):
if self.e!=None and self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
if self.e!=None:
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
H,W,K=map(int,readline().split())
H-=1;W-=1
K//=2
mod=998244353
fact=[1]+[i for i in range(1,H+W+1)]
for i in range(1,H+W+1):
fact[i]*=fact[i-1]
fact[i]%=mod
fact_inve=[i for i in range(1,H+W+1)]+[pow(fact[H+W],mod-2,mod)]
for i in range(H+W-1,-1,-1):
fact_inve[i]*=fact_inve[i+1]
fact_inve[i]%=mod
N=min(H,W)
ans=0
if K<=310:
for h in range(N+1):
if h:
prev=dp
dp=[0]*(2*K+1)
else:
dp=[0]*(2*K+1)
dp[K]=1
for w in range(max(h-K,0),min(h+K,N)+1):
if h and abs((h-1)-w)<=K:
dp[w-h+K]+=prev[w-(h-1)+K]
if w and abs(h-(w-1))<=K:
dp[w-h+K]+=dp[(w-1)-h+K]
dp[w-h+K]%=mod
ans+=fact[H+W]*fact_inve[H-h]%mod*fact_inve[W-h]%mod*fact_inve[2*h]%mod*dp[K]%mod
ans%=mod
else:
for cnt in range(N+1):
s=fact_inve[cnt]*fact_inve[cnt]%mod
for i in range(1,cnt//(K+1)+1):
if i%2:
s-=2*fact_inve[cnt-(K+1)*i]*fact_inve[cnt+(K+1)*i]%mod
else:
s+=2*fact_inve[cnt-(K+1)*i]*fact_inve[cnt+(K+1)*i]%mod
s%=mod
ans+=fact[H+W]*fact_inve[H-cnt]%mod*fact_inve[W-cnt]%mod*s%mod
ans%=mod
print(ans)
vwxyz