結果

問題 No.2713 Just Solitaire
ユーザー budoubudou
提出日時 2024-04-12 20:40:15
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 125 ms / 2,000 ms
コード長 9,477 bytes
コンパイル時間 366 ms
コンパイル使用メモリ 82,228 KB
実行使用メモリ 80,060 KB
最終ジャッジ日時 2024-04-12 20:40:20
合計ジャッジ時間 5,103 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 65 ms
71,796 KB
testcase_01 AC 66 ms
70,352 KB
testcase_02 AC 67 ms
71,956 KB
testcase_03 AC 70 ms
72,140 KB
testcase_04 AC 93 ms
78,568 KB
testcase_05 AC 73 ms
71,952 KB
testcase_06 AC 98 ms
78,852 KB
testcase_07 AC 70 ms
71,840 KB
testcase_08 AC 69 ms
70,708 KB
testcase_09 AC 67 ms
70,692 KB
testcase_10 AC 69 ms
72,400 KB
testcase_11 AC 84 ms
78,544 KB
testcase_12 AC 67 ms
72,556 KB
testcase_13 AC 104 ms
80,060 KB
testcase_14 AC 96 ms
79,072 KB
testcase_15 AC 71 ms
70,908 KB
testcase_16 AC 71 ms
71,020 KB
testcase_17 AC 99 ms
78,892 KB
testcase_18 AC 70 ms
70,628 KB
testcase_19 AC 113 ms
79,708 KB
testcase_20 AC 70 ms
70,732 KB
testcase_21 AC 66 ms
71,152 KB
testcase_22 AC 68 ms
71,212 KB
testcase_23 AC 94 ms
78,584 KB
testcase_24 AC 99 ms
78,644 KB
testcase_25 AC 108 ms
78,800 KB
testcase_26 AC 104 ms
78,544 KB
testcase_27 AC 102 ms
79,136 KB
testcase_28 AC 99 ms
78,944 KB
testcase_29 AC 99 ms
79,168 KB
testcase_30 AC 98 ms
78,932 KB
testcase_31 AC 100 ms
78,888 KB
testcase_32 AC 106 ms
79,076 KB
testcase_33 AC 125 ms
79,256 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import typing
import sys
from collections import deque, defaultdict
input = lambda: sys.stdin.readline().strip()
inf = 10**18
mod = 998244353
from typing import NamedTuple, Optional, List, Tuple, cast
from heapq import heappush, heappop
from typing import NamedTuple, Optional, List, cast


class MFGraph:
    class Edge(NamedTuple):
        src: int
        dst: int
        cap: int
        flow: int

    class _Edge:
        def __init__(self, dst: int, cap: int) -> None:
            self.dst = dst
            self.cap = cap
            self.rev: Optional[MFGraph._Edge] = None

    def __init__(self, n: int) -> None:
        self._n = n
        self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)]
        self._edges: List[MFGraph._Edge] = []

    def add_edge(self, src: int, dst: int, cap: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MFGraph._Edge(dst, cap)
        re = MFGraph._Edge(src, 0)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def get_edge(self, i: int) -> Edge:
        assert 0 <= i < len(self._edges)
        e = self._edges[i]
        re = cast(MFGraph._Edge, e.rev)
        return MFGraph.Edge(
            re.dst,
            e.dst,
            e.cap + re.cap,
            re.cap
        )

    def edges(self) -> List[Edge]:
        return [self.get_edge(i) for i in range(len(self._edges))]

    def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:
        assert 0 <= i < len(self._edges)
        assert 0 <= new_flow <= new_cap
        e = self._edges[i]
        e.cap = new_cap - new_flow
        assert e.rev is not None
        e.rev.cap = new_flow

    def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit is None:
            flow_limit = cast(int, sum(e.cap for e in self._g[s]))

        current_edge = [0] * self._n
        level = [0] * self._n

        def fill(arr: List[int], value: int) -> None:
            for i in range(len(arr)):
                arr[i] = value

        def bfs() -> bool:
            fill(level, self._n)
            queue = []
            q_front = 0
            queue.append(s)
            level[s] = 0
            while q_front < len(queue):
                v = queue[q_front]
                q_front += 1
                next_level = level[v] + 1
                for e in self._g[v]:
                    if e.cap == 0 or level[e.dst] <= next_level:
                        continue
                    level[e.dst] = next_level
                    if e.dst == t:
                        return True
                    queue.append(e.dst)
            return False

        def dfs(lim: int) -> int:
            stack = []
            edge_stack: List[MFGraph._Edge] = []
            stack.append(t)
            while stack:
                v = stack[-1]
                if v == s:
                    flow = min(lim, min(e.cap for e in edge_stack))
                    for e in edge_stack:
                        e.cap -= flow
                        assert e.rev is not None
                        e.rev.cap += flow
                    return flow
                next_level = level[v] - 1
                while current_edge[v] < len(self._g[v]):
                    e = self._g[v][current_edge[v]]
                    re = cast(MFGraph._Edge, e.rev)
                    if level[e.dst] != next_level or re.cap == 0:
                        current_edge[v] += 1
                        continue
                    stack.append(e.dst)
                    edge_stack.append(re)
                    break
                else:
                    stack.pop()
                    if edge_stack:
                        edge_stack.pop()
                    level[v] = self._n
            return 0

        flow = 0
        while flow < flow_limit:
            if not bfs():
                break
            fill(current_edge, 0)
            while flow < flow_limit:
                f = dfs(flow_limit - flow)
                flow += f
                if f == 0:
                    break
        return flow

    def min_cut(self, s: int) -> List[bool]:
        visited = [False] * self._n
        stack = [s]
        visited[s] = True
        while stack:
            v = stack.pop()
            for e in self._g[v]:
                if e.cap > 0 and not visited[e.dst]:
                    visited[e.dst] = True
                    stack.append(e.dst)
        return visited
class MCFGraph:
    class Edge(NamedTuple):
        src: int
        dst: int
        cap: int
        flow: int
        cost: int

    class _Edge:
        def __init__(self, dst: int, cap: int, cost: int) -> None:
            self.dst = dst
            self.cap = cap
            self.cost = cost
            self.rev: Optional[MCFGraph._Edge] = None

    def __init__(self, n: int) -> None:
        self._n = n
        self._g: List[List[MCFGraph._Edge]] = [[] for _ in range(n)]
        self._edges: List[MCFGraph._Edge] = []

    def add_edge(self, src: int, dst: int, cap: int, cost: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        assert 0 <= cap
        m = len(self._edges)
        e = MCFGraph._Edge(dst, cap, cost)
        re = MCFGraph._Edge(src, 0, -cost)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def get_edge(self, i: int) -> Edge:
        assert 0 <= i < len(self._edges)
        e = self._edges[i]
        re = cast(MCFGraph._Edge, e.rev)
        return MCFGraph.Edge(
            re.dst,
            e.dst,
            e.cap + re.cap,
            re.cap,
            e.cost
        )

    def edges(self) -> List[Edge]:
        return [self.get_edge(i) for i in range(len(self._edges))]

    def flow(self, s: int, t: int,
             flow_limit: Optional[int] = None) -> Tuple[int, int]:
        return self.slope(s, t, flow_limit)[-1]

    def slope(self, s: int, t: int,
              flow_limit: Optional[int] = None) -> List[Tuple[int, int]]:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit is None:
            flow_limit = cast(int, sum(e.cap for e in self._g[s]))

        dual = [0] * self._n
        prev: List[Optional[Tuple[int, MCFGraph._Edge]]] = [None] * self._n

        def refine_dual() -> bool:
            pq = [(0, s)]
            visited = [False] * self._n
            dist: List[Optional[int]] = [None] * self._n
            dist[s] = 0
            while pq:
                dist_v, v = heappop(pq)
                if visited[v]:
                    continue
                visited[v] = True
                if v == t:
                    break
                dual_v = dual[v]
                for e in self._g[v]:
                    w = e.dst
                    if visited[w] or e.cap == 0:
                        continue
                    reduced_cost = e.cost - dual[w] + dual_v
                    new_dist = dist_v + reduced_cost
                    dist_w = dist[w]
                    if dist_w is None or new_dist < dist_w:
                        dist[w] = new_dist
                        prev[w] = v, e
                        heappush(pq, (new_dist, w))
            else:
                return False
            dist_t = dist[t]
            for v in range(self._n):
                if visited[v]:
                    dual[v] -= cast(int, dist_t) - cast(int, dist[v])
            return True

        flow = 0
        cost = 0
        prev_cost_per_flow: Optional[int] = None
        result = [(flow, cost)]
        while flow < flow_limit:
            if not refine_dual():
                break
            f = flow_limit - flow
            v = t
            while prev[v] is not None:
                u, e = cast(Tuple[int, MCFGraph._Edge], prev[v])
                f = min(f, e.cap)
                v = u
            v = t
            while prev[v] is not None:
                u, e = cast(Tuple[int, MCFGraph._Edge], prev[v])
                e.cap -= f
                assert e.rev is not None
                e.rev.cap += f
                v = u
            c = -dual[s]
            flow += f
            cost += f * c
            if c == prev_cost_per_flow:
                result.pop()
            result.append((flow, cost))
            prev_cost_per_flow = c
        return result

def solve():

  # https://yukicoder.me/problems/no/2713

  N, M = map(int, input().split())
  A = list(map(int, input().split()))
  B = list(map(int, input().split()))
  g = MFGraph(N+M+2)
  # 燃やす埋める問題
  # 0: 使わない(S)
  # N+M+1: 使う(T)

  # iを使うとx円の罰金
  # Sからiにxの辺
  for i in range(N):
    g.add_edge(0, i+1, A[i])
    g.add_edge(i+1, N+M+1,0)
  # c1~ckを使うとP円の賞金 -> 1つでも使わないとP円の罰金
  # cからKにinfの辺
  # SからKに0, KからTにPの辺
  for m in range(M):
    c = list(map(int, input().split()))[1:]
    for x in c:
      g.add_edge(x, N+1+m, inf)
    g.add_edge(0, N+1+m, 0)
    g.add_edge(N+1+m, N+M+1, B[m])

  print(sum(B)-g.flow(0, N+M+1))
def main():
  t = 1
  for _ in range(t):
    solve()
main()
0