結果

問題 No.2763 Macaron Gift Box
ユーザー 👑 binap
提出日時 2024-04-27 07:54:56
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 966 ms / 3,000 ms
コード長 3,476 bytes
コンパイル時間 4,864 ms
コンパイル使用メモリ 266,476 KB
最終ジャッジ日時 2025-02-21 09:13:34
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
using namespace atcoder;

using mint = modint998244353;


// Thanks for Luzhiled-san's website
// https://ei1333.github.io/luzhiled/snippets/math/formal-power-series.html
template< typename T >
struct FormalPowerSeries : vector< T > {
  using vector< T >::vector;
  using P = FormalPowerSeries;
  
  template<class...Args> FormalPowerSeries(Args...args): vector<T>(args...) {}
  FormalPowerSeries(initializer_list<T> a): vector<T>(a.begin(),a.end()) {}
  
  using MULT = function< P(P, P) >;

  static MULT &get_mult() {
    static MULT mult = [&](P a, P b){
		P res(convolution(a, b));
		return res;
	};
    return mult;
  }

  static void set_fft(MULT f) {
    get_mult() = f;
  }

  P operator+(const P &r) const { return P(*this) += r; }
  
  P operator+(const T &v) const { return P(*this) += v; }

  P operator*(const P &r) const { return P(*this) *= r; }

  P operator*(const T &v) const { return P(*this) *= v; }

  P &operator+=(const P &r) {
    if(r.size() > this->size()) this->resize(r.size());
    for(int i = 0; i < int(r.size()); i++) (*this)[i] += r[i];
    return *this;
  }
  
  P &operator+=(const T &r) {
    if(this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  P &operator*=(const T &v) {
    const int n = (int) this->size();
    for(int k = 0; k < n; k++) (*this)[k] *= v;
    return *this;
  }

  P &operator*=(const P &r) {
    if(this->empty() || r.empty()) {
      this->clear();
      return *this;
    }
    assert(get_mult() != nullptr);
    return *this = get_mult()(*this, r);
  }
  
  P pre(int sz) const {
    return P(begin(*this), begin(*this) + min((int) this->size(), sz));
  }
  
  P diff() const {
    const int n = (int) this->size();
    P ret(max(0, n - 1));
    for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
    return ret;
  }
  
  P integral() const {
    const int n = (int) this->size();
    P ret(n + 1);
    ret[0] = T(0);
    for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
    return ret;
  }

  // F(0) must not be 0
  P inv(int deg = -1) const {
    assert(((*this)[0]) != T(0));
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    P ret({T(1) / (*this)[0]});
    for(int i = 1; i < deg; i <<= 1) {
      ret = (ret * T(2) + ret * ret * pre(i << 1) * T(-1)).pre(i << 1);
    }
    return ret.pre(deg);
  }
  // F(0) must be 1
  P log(int deg = -1) const {
    assert((*this)[0] == 1);
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }
  // F(0) must be 0
  P exp(int deg = -1) const {
    assert((*this)[0] == T(0));
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    P ret({T(1)});
    for(int i = 1; i < deg; i <<= 1) {
      ret = (ret * (pre(i << 1) + T(1) + ret.log(i << 1) * T(-1))).pre(i << 1);
    }
    return ret.pre(deg);
  }
};

using fps = FormalPowerSeries<mint>;

int main(){
	int n, k;
	cin >> n >> k;
	assert(1 <= k && k <= n && n <= 200000);
	fps f(n + 1);
	for(int i = 1; i <= n; i++){
		for(int j = 1; (long long)i * j * (k + 1) <= n; j++){
			f[i * j * (k + 1)] -= mint(j).inv();
		}
	}
	for(int i = 1; i <= n; i++){
		for(int j = 1; i * j <= n; j++){
			f[i * j] += mint(j).inv();
		}
	}
	f = f.exp();
	for(int i = 1; i <= n; i++){
		cout << f[i].val();
		if(i == n) cout << "\n";
		else cout << " ";
	}
	return 0;
}
0