結果

問題 No.2751 429-like Number
ユーザー mikammikam
提出日時 2024-05-11 14:17:39
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 608 ms / 4,000 ms
コード長 5,942 bytes
コンパイル時間 8,017 ms
コンパイル使用メモリ 404,764 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-12-20 08:35:07
合計ジャッジ時間 12,792 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 6
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <atcoder/all>
using namespace atcoder;
#include <atcoder/internal_math>
using namespace internal;
#include <bits/stdc++.h>
using namespace std;
#include <boost/multiprecision/cpp_int.hpp>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep2(i,a,b) for (int i = (int)(a); i < (int)(b); i++)
#define all(v) v.begin(),v.end()
#define inc(x,l,r) ((l)<=(x)&&(x)<(r))
#define Unique(x) sort(all(x)), x.erase(unique(all(x)), x.end())
#define pcnt __builtin_popcountll
#define pb push_back
typedef long long ll;
#define int ll
using ld = long double;
using vi = vector<int>;
using vs = vector<string>;
using P = pair<int,int>;
using vp = vector<P>;
using ull = unsigned long long;
using Bint = boost::multiprecision::cpp_int;
template<typename T1,typename T2> bool chmax(T1 &a, const T2 b) {if (a < b) {a = b; return true;} else return false; }
template<typename T1,typename T2> bool chmin(T1 &a, const T2 b) {if (a > b) {a = b; return true;} else return false; }
template<typename T> using priority_queue_greater = priority_queue<T, vector<T>, greater<T>>;
template<typename T1,typename T2> ostream &operator<< (ostream &os, const pair<T1,T2> &p){os << p.first <<" "<<p.second;return os;}
ostream &operator<< (ostream &os, const modint1000000007 &m){os << m.val();return os;}
istream &operator>> (istream &is, modint1000000007 &m){ll in;is>>in;m=in;return is;}
ostream &operator<< (ostream &os, const modint998244353 &m){os << m.val();return os;}
istream &operator>> (istream &is, modint998244353 &m){ll in;is>>in;m=in;return is;}
template<typename T> istream &operator>>(istream& is,vector<T> &v){for(T &in:v)is>>in;return is;}
template<class... T> void input(T&... a){(cin>> ... >> a);}
#ifdef LOCAL
template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){os<<"\x1b[32m";rep(i,v.size())os<<v[i]<<(i+1!=v.size()?" ":"");os<<"\x1b[0m"
    ;return os;}
template<class T> int print(T& a){cout << "\x1b[32m"<< a<< '\n' << "\x1b[0m";return 0;}
template<class T,class... Ts> int print(const T&a, const Ts&... b){cout << "\x1b[32m" << a;(cout<<...<<(cout<<' ',b));cout<<'\n' << "\x1b[0m";return
    0;}
#else
template<typename T> ostream &operator<<(ostream &os,const vector<T> &v){rep(i,v.size())os<<v[i]<<(i+1!=v.size()?" ":"");return os;}
template<class T> int print(T& a){cout << a<< '\n';return 0;}
template<class T,class... Ts> int print(const T&a, const Ts&... b){cout << a;(cout<<...<<(cout<<' ',b));cout<<'\n';return 0;}
#endif
#define VI(v,n) vi v(n); input(v)
#define INT(...) int __VA_ARGS__; input(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; input(__VA_ARGS__)
#define CHAR(...) char __VA_ARGS__; input(__VA_ARGS__)
int sign(ll x){return x>0?1:x<0?-1:0;}
ll ceil(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return (x+y-1)/y;return -((-x/y));}
ll floor(ll x,ll y){assert(y!=0);if(sign(x)==sign(y))return x/y;if(y<0)x*=-1,y*=-1;return x/y-(x%y<0);}
ll abs(ll x,ll y){return abs(x-y);}
ll bit(int n){return 1ll<<n;}
template<class T> bool ins(string s,T t){return s.find(t)!=string::npos;}
P operator+ (const P &p, const P &q){ return P{p.first+q.first,p.second+q.second};}
P operator- (const P &p, const P &q){ return P{p.first-q.first,p.second-q.second};}
int yesno(bool ok,string y="Yes",string n="No"){ cout<<(ok?y:n)<<endl;return 0;}
int YESNO(bool ok,string y="YES",string n="NO"){ cout<<(ok?y:n)<<endl;return 0;}
int takao(bool takahashi){return yesno(takahashi,"Takahashi","Aoki");}
struct __m___m__ {__m___m__(){cin.tie(0);ios_base::sync_with_stdio(false);cout << fixed << setprecision(20);}} _m_m_;
int di[]={0,1,0,-1,-1,-1,1,1};
int dj[]={1,0,-1,0,-1,1,-1,1};
const ll INF = 8e18;
//using mint = modint1000000007;
using mint = modint998244353;
//mint stom(const string &s,int b=10){mint res = 0;for(auto c:s)res *= b,res += c-'0';return res;}
// Miller-Rabin
template<class T> T pow_mod(T A, T N, T M) {
T res = 1 % M;
A %= M;
while (N) {
if (N & 1) res = (res * A) % M;
A = (A * A) % M;
N >>= 1;
}
return res;
}
bool is_prime(long long N) {
if (N <= 1) return false;
if (N == 2 || N == 3) return true;
if (N % 2 == 0) return false;
vector<long long> A = {2, 325, 9375, 28178, 450775,
9780504, 1795265022};
long long s = 0, d = N - 1;
while (d % 2 == 0) {
++s;
d >>= 1;
}
for (auto a : A) {
if (a % N == 0) return true;
long long t, x = pow_mod<__int128_t>(a, d, N);
if (x != 1) {
for (t = 0; t < s; ++t) {
if (x == N - 1) break;
x = __int128_t(x) * x % N;
}
if (t == s) return false;
}
}
return true;
}
// Pollard
long long gcd(long long A, long long B) {
A = abs(A), B = abs(B);
if (B == 0) return A;
else return gcd(B, A % B);
}
long long pollard(long long N) {
if (N % 2 == 0) return 2;
if (::is_prime(N)) return N;
auto f = [&](long long x) -> long long {
return (__int128_t(x) * x + 1) % N;
};
long long step = 0;
while (true) {
++step;
long long x = step, y = f(x);
while (true) {
long long p = gcd(y - x + N, N);
if (p == 0 || p == N) break;
if (p != 1) return p;
x = f(x);
y = f(f(y));
}
}
}
vector<long long> prime_factorize(long long N) {
if (N == 1) return {};
long long p = pollard(N);
if (p == N) return {p};
vector<long long> left = prime_factorize(p);
vector<long long> right = prime_factorize(N / p);
left.insert(left.end(), right.begin(), right.end());
sort(left.begin(), left.end());
return left;
}
signed main() {
INT(q);
while(q--){
INT(a);
auto p = prime_factorize(a);
yesno(p.size()==3);
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0