結果

問題 No.2826 Earthwork
ユーザー ecottea
提出日時 2024-07-27 17:49:44
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 17,484 bytes
コンパイル時間 4,835 ms
コンパイル使用メモリ 278,064 KB
最終ジャッジ日時 2025-02-23 19:11:59
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 1 TLE * 1 -- * 38
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // mod
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = static_modint<1234567891>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
template <size_t N> inline int lsb(const bitset<N>& b) { return b._Find_first(); }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE MLE
#endif
//
/*
* to :
* cost :
*/
struct WEdge {
// verify : https://judge.yosupo.jp/problem/shortest_path
int to; //
ll cost; //
WEdge() : to(-1), cost(-INFL) {}
WEdge(int to, ll cost) : to(to), cost(cost) {}
//
operator int() const { return to; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const WEdge& e) {
os << '(' << e.to << ',' << e.cost << ')';
return os;
}
#endif
};
//
/*
* WGraph g
* g[v] : v
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;
//
/*
* Ushige(int n) : O(n)
* n
*
* set_ub(int a, int b, ll d) : O(1)
* v[b] - v[a] ≦ d
*
* set_lb(int a, int b, ll d) : O(1)
* v[b] - v[a] ≧ d
*
* vl maximize_diff(int a) : O(n m)m :
* b v[b] - v[a] INFL
*
*
*
*/
struct Ushige {
int n;
WGraph g;
Ushige(int n_) : n(n_), g(n_) {
// verify : https://onlinejudge.u-aizu.ac.jp/problems/0304
}
void set_ub(int a, int b, ll d) {
// verify : https://onlinejudge.u-aizu.ac.jp/problems/0304
//
g[a].push_back({ b, d });
}
void set_lb(int a, int b, ll d) {
// verify : https://onlinejudge.u-aizu.ac.jp/problems/0304
//
g[b].push_back({ a, -d });
}
vl maximize_diff(int a) {
// verify : https://onlinejudge.u-aizu.ac.jp/problems/0304
// a
// b v[b] - v[a]
//
vl cost(n, INFL); //
cost[a] = 0;
rep(i, n) {
bool updated = false;
//
rep(s, n) {
repe(e, g[s]) {
// INFL
// st
if (cost[s] + e.cost < cost[e.to]) {
cost[e.to] = cost[s] + e.cost;
updated = true;
}
}
}
//
if (!updated) return cost;
}
// n
// false
return vl();
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Ushige& u) {
rep(s, u.n) {
repe(e, u.g[s]) {
os << "v[" << e.to << "] - v[" << s << "] <= " << e.cost << endl;
}
}
return os;
}
#endif
};
void WA() {
int n;
cin >> n;
vvl h(n, vl(n));
vvc x(n, vc(n));
vvl a(n - 1, vl(n));
vvl b(n, vl(n - 1));
cin >> h >> x >> a >> b;
Ushige g(n * n + 1);
rep(i, n) rep(j, n) {
if ((i + j) % 2 == 0) {
if (x[i][j] == '-') {
// v[i][j] <= h[i][j];
// v[i][j] - 0 <= h[i][j]
g.set_ub(n * n, i * n + j, h[i][j]);
}
else if (x[i][j] == '+') {
// v[i][j] >= h[i][j];
// v[i][j] - 0 >= h[i][j]
g.set_lb(n * n, i * n + j, h[i][j]);
}
else if (x[i][j] == '=') {
g.set_ub(n * n, i * n + j, h[i][j]);
g.set_lb(n * n, i * n + j, h[i][j]);
}
}
else {
if (x[i][j] == '-') {
// -v[i][j] <= h[i][j];
// 0 - v[i][j] <= h[i][j]
g.set_ub(i * n + j, n * n, h[i][j]);
}
else if (x[i][j] == '+') {
// -v[i][j] >= h[i][j];
// 0 - v[i][j] >= h[i][j]
g.set_lb(i * n + j, n * n, h[i][j]);
}
else if (x[i][j] == '=') {
g.set_ub(i * n + j, n * n, h[i][j]);
g.set_lb(i * n + j, n * n, h[i][j]);
}
}
}
rep(i, n - 1) rep(j, n) {
// |v[i][j] - v[i+1][j]| <= a[i][j] |h[i][j] + h[i+1][j]|
// v[i][j] - v[i+1][j] <= a[i][j] |h[i][j] + h[i+1][j]|
// v[i+1][j] - v[i][j] <= a[i][j] |h[i][j] + h[i+1][j]|
g.set_ub(i * n + j, (i + 1) * n + j, a[i][j] * abs(h[i][j] + h[i + 1][j]));
g.set_ub((i + 1) * n + j, i * n + j, a[i][j] * abs(h[i][j] + h[i + 1][j]));
}
rep(i, n) rep(j, n - 1) {
g.set_ub(i * n + j, i * n + (j + 1), b[i][j] * abs(h[i][j] + h[i][j + 1]));
g.set_ub(i * n + (j + 1), i * n + j, b[i][j] * abs(h[i][j] + h[i][j + 1]));
}
auto d_max = g.maximize_diff(n * n);
dump(d_max);
rep(i, n) {
rep(j, n) {
cerr << d_max[i * n + j] << " ";
}
cerr << endl;
}
int q;
cin >> q;
rep(hoge, q) {
int i, j; ll e;
cin >> i >> j >> e;
i--; j--;
if ((i + j) % 2 == 0) {
Yes(e <= d_max[i * n + j]);
}
else {
}
}
}
//O(n + m log n)
/*
* g st INFL
*/
vl dijkstra(const WGraph& g, int st) {
// : https://snuke.hatenablog.com/entry/2021/02/22/102734
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_bl
int n = sz(g);
vl dist(n, INFL); // st
dist[st] = 0;
// (st , )
priority_queue_rev<pli> q;
q.push({ 0, st });
while (!q.empty()) {
auto [c, s] = q.top(); q.pop();
// O(n^2)
if (dist[s] < c) continue;
// 辿
repe(e, g[s]) if (chmin(dist[e.to], dist[s] + e.cost)) q.push({ dist[e.to], e.to });
}
return dist;
}
//
/*
* Ushige_ub_only(n) : O(1)
* n
*
* set_ub(a, b, d) : O(1)
* v[b] - v[a] ≦ d d ≧ 0
*
* vl maximize_diff(a) : O(n + m log n)m :
* b v[b] - v[a] INFL
*
*
*/
struct Ushige_ub_only {
int n;
WGraph g;
Ushige_ub_only() : n(0) {}
Ushige_ub_only(int n_) : n(n_), g(n_) {}
void set_ub(int a, int b, ll d) {
Assert(d >= 0);
//
g[a].push_back({ b, d });
}
vl maximize_diff(int a) {
// a
// b v[b] - v[a]
return dijkstra(g, a);
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Ushige_ub_only& u) {
rep(s, u.n) {
repe(e, u.g[s]) {
os << "v[" << e.to << "] - v[" << s << "] <= " << e.cost << endl;
}
}
return os;
}
#endif
};
void WA2() {
int n;
cin >> n;
vvl h(n, vl(n));
vvc x(n, vc(n));
vvl a(n - 1, vl(n));
vvl b(n, vl(n - 1));
cin >> h >> x >> a >> b;
// 0: v = h', 1: v = -h', inf, -inf
Ushige g(n * n + 2); ll inf = INFL / 4;
rep(i, n) rep(j, n) {
if ((i + j) % 2 == 0) {
if (x[i][j] == '-') {
// v[i][j] <= h[i][j];
// v[i][j] - (-inf) <= h[i][j] + inf
g.set_ub(n * n + 1, i * n + j, h[i][j] + inf);
}
else if (x[i][j] == '+') {
// v[i][j] >= h[i][j];
// -v[i][j] <= -h[i][j]
// inf - v[i][j] <= inf - h[i][j]
g.set_ub(i * n + j, n * n, inf - h[i][j]);
}
else if (x[i][j] == '=') {
g.set_ub(n * n + 1, i * n + j, h[i][j] + inf);
g.set_ub(i * n + j, n * n, inf - h[i][j]);
}
}
else {
if (x[i][j] == '-') {
// -v[i][j] <= h[i][j];
// inf - v[i][j] <= inf + h[i][j];
g.set_ub(i * n + j, n * n, inf + h[i][j]);
}
else if (x[i][j] == '+') {
// -v[i][j] >= h[i][j];
// v[i][j] <= -h[i][j];
// v[i][j] - (-inf) <= -h[i][j] + inf;
g.set_lb(n * n + 1, i * n + j, -h[i][j] + inf);
}
else if (x[i][j] == '=') {
g.set_ub(i * n + j, n * n, inf + h[i][j]);
g.set_lb(n * n + 1, i * n + j, -h[i][j] + inf);
}
}
}
cerr << "tate" << endl;
rep(i, n - 1) rep(j, n) {
// |v[i][j] - v[i+1][j]| <= a[i][j] |h[i][j] + h[i+1][j]|
// v[i][j] - v[i+1][j] <= a[i][j] |h[i][j] + h[i+1][j]|
// v[i+1][j] - v[i][j] <= a[i][j] |h[i][j] + h[i+1][j]|
g.set_ub(i * n + j, (i + 1) * n + j, a[i][j] * abs(h[i][j] + h[i + 1][j]));
g.set_ub((i + 1) * n + j, i * n + j, a[i][j] * abs(h[i][j] + h[i + 1][j]));
cerr << a[i][j] * abs(h[i][j] + h[i + 1][j]) << " \n"[j == n - 1];
}
cerr << "yoko" << endl;
rep(i, n) rep(j, n - 1) {
g.set_ub(i * n + j, i * n + (j + 1), b[i][j] * abs(h[i][j] + h[i][j + 1]));
g.set_ub(i * n + (j + 1), i * n + j, b[i][j] * abs(h[i][j] + h[i][j + 1]));
cerr << b[i][j] * abs(h[i][j] + h[i][j + 1]) << " \n"[j == n - 2];
}
// inf - (-inf) = 2 * inf
// inf - (-inf) ≦ 2 * inf ???
g.set_ub(n * n + 1, n * n, 2 * inf);
// max(v - inf) = max(h' - inf) = max(h') - inf
auto d_max = g.maximize_diff(n * n);
dump(d_max);
int q;
cin >> q;
rep(hoge, q) {
int i, j; ll e;
cin >> i >> j >> e;
i--; j--;
if ((i + j) % 2 == 0) {
Yes(e <= d_max[i * n + j]);
}
else {
}
}
}
int main() {
input_from_file("input.txt");
// output_to_file("output.txt");
int n;
cin >> n;
vvl h(n, vl(n));
vvc x(n, vc(n));
vvl a(n - 1, vl(n));
vvl b(n, vl(n - 1));
cin >> h >> x >> a >> b;
ll inf = INFL / 2;
vl d_max0;
{
// 0: v = h', 1: v = -h', -inf
Ushige g(n * n + 1);
rep(i, n) rep(j, n) {
if ((i + j) % 2 == 0) {
if (x[i][j] == '-' || x[i][j] == '=') {
// v[i][j] <= h[i][j];
// v[i][j] - (-inf) <= h[i][j] + inf
g.set_ub(n * n, i * n + j, h[i][j] + inf);
}
}
else {
if (x[i][j] == '+' || x[i][j] == '=') {
// -v[i][j] >= h[i][j];
// v[i][j] <= -h[i][j];
// v[i][j] - (-inf) <= -h[i][j] + inf;
g.set_lb(n * n, i * n + j, -h[i][j] + inf);
}
}
}
rep(i, n - 1) rep(j, n) {
// |v[i][j] - v[i+1][j]| <= a[i][j] |h[i][j] + h[i+1][j]|
// v[i][j] - v[i+1][j] <= a[i][j] |h[i][j] + h[i+1][j]|
// v[i+1][j] - v[i][j] <= a[i][j] |h[i][j] + h[i+1][j]|
g.set_ub(i * n + j, (i + 1) * n + j, a[i][j] * abs(h[i][j] + h[i + 1][j]));
g.set_ub((i + 1) * n + j, i * n + j, a[i][j] * abs(h[i][j] + h[i + 1][j]));
}
rep(i, n) rep(j, n - 1) {
g.set_ub(i * n + j, i * n + (j + 1), b[i][j] * abs(h[i][j] + h[i][j + 1]));
g.set_ub(i * n + (j + 1), i * n + j, b[i][j] * abs(h[i][j] + h[i][j + 1]));
}
// max(v - (-inf)) = max(h' + inf) = max(h') + inf
d_max0 = g.maximize_diff(n * n);
// rep(i, n) rep(j, n) d_max0[i * n + j] -= inf;
dump(d_max0);
}
vl d_max1;
{
Ushige g(n * n + 1);
rep(i, n) rep(j, n) {
if ((i + j) % 2 == 0) {
if (x[i][j] == '+' || x[i][j] == '=') {
g.set_ub(n * n, i * n + j, inf - h[i][j]);
}
}
else {
if (x[i][j] == '-' || x[i][j] == '=') {
g.set_ub(i * n + j, i * n + j, inf + h[i][j]);
}
}
}
rep(i, n - 1) rep(j, n) {
// |v[i][j] - v[i+1][j]| <= a[i][j] |h[i][j] + h[i+1][j]|
// v[i][j] - v[i+1][j] <= a[i][j] |h[i][j] + h[i+1][j]|
// v[i+1][j] - v[i][j] <= a[i][j] |h[i][j] + h[i+1][j]|
g.set_ub(i * n + j, (i + 1) * n + j, a[i][j] * abs(h[i][j] + h[i + 1][j]));
g.set_ub((i + 1) * n + j, i * n + j, a[i][j] * abs(h[i][j] + h[i + 1][j]));
}
rep(i, n) rep(j, n - 1) {
g.set_ub(i * n + j, i * n + (j + 1), b[i][j] * abs(h[i][j] + h[i][j + 1]));
g.set_ub(i * n + (j + 1), i * n + j, b[i][j] * abs(h[i][j] + h[i][j + 1]));
}
// max(v - inf) = max(-h' - inf) = -min(h') - inf
d_max1 = g.maximize_diff(n * n);
// rep(i, n) rep(j, n) d_max1[i * n + j] -= inf;
dump(d_max1);
}
int q;
cin >> q;
rep(hoge, q) {
int i, j; ll e;
cin >> i >> j >> e;
i--; j--;
if ((i + j) % 2 == 0) {
Yes(e - (-inf) <= d_max0[i * n + j]);
}
else {
Yes(inf - (-e) <= d_max1[i * n + j]);
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0